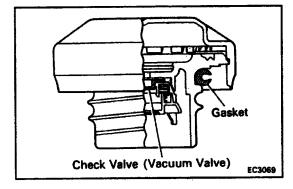
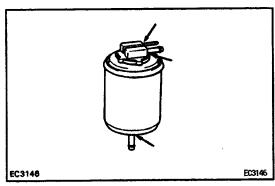

EVAPORATIVE EMISSION (EVAP) CONTROL SYSTEM

To reduce HC combustion in	,	•	n the fuel tan	k is routed t	hrough the o	charcoal car	nister to the intake manifold for
Engine Coolant Temp.	TVV	Throttle Valve Opening	Check Valve is Charcoal Canister			Check	Evenerated Fuel (UC)
			(1)	(2)	(3)	Valve in Cap	Evaporated Fuel (HC)
Below 35°C (95°F)	CLOSED	-	_	-	-	- .	HC from tank is absorbed in the canister.
Above 54°C (129°F)	OPEN	Positioned below purge port	CLOSED	_	_	-	
		Positioned above purge port	OPEN	-	-	-	HC from canister is led into air intake manifold.
High pressure in tank	-	-	_	OPEN	CLOSED	CLOSED	HC from tank is absorbed in the canister.
High vacuum in tank	-	- .	-	CLOSED	OPEN	OPEN	(Air is led into the fuel tank.)

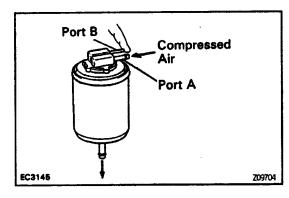

FUEL VAPOR LINES, FUEL TANK AND TANK CAP INSPECTION

1. VISUALLY INSPECT LINES AND CONNECTIONS

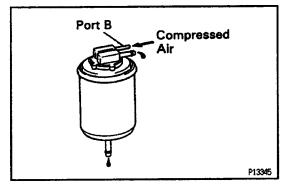
Look for loose connections, sharp bends or damage.


2. VISUALLY INSPECT FUEL TANK

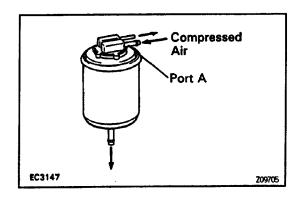
Look for deformation, cracks or fuel leakage.

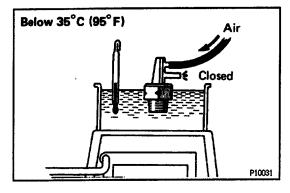

3. VISUALLY INSPECT FUEL TANK CAP

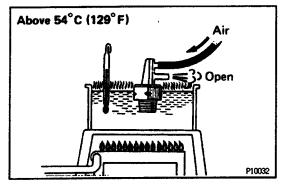
Look for a damaged or deformed gasket and cap. 1f necessary, repair or replace the cap.


CHARCOAL CANISTER INSPECTION

- 1. REMOVE CHARCOAL CANISTER
- 2. VISUALLY INSPECT CHARCOAL CANISTER CASE Look for cracks or damage.


3. CHECK FOR CLOGGED FILTER AND STUCK CHECK VALVE


(a) Using low pressure compressed air 4.71 kPa (48 gf/cm², 0.68 psi), blow into port A and check that air flows without resistance from the other ports.



(b) Blow low pressure compressed air 4.71 kPa (48 gf/cm², 0.68 psi) into port B and check that air does not flow from the other ports.

If a problem is found, replace the charcoal canister.

4. CLEAN FILTER IN CANISTER

Clean the filter by blowing 294 kPa (3 kgf/cm2, 43 psi) of compressed air into port A while holding port B closed.

NOTICE:

- Do not attempt to wash the canister.
- No activated carbon should come out.

5. INSTALL CHARCOAL CANISTER

TVV INSPECTION

CHECK TVV BY BLOWING AIR INTO PIPE

- (a) Drain the coolant from the radiator into a suitable container.
- (b) Remove the TVV from the intake manifold.
- (c) Cool the TVV to below 35°C (95°F) with coot water.
- (d) Blow air into a pipe and check that the TVV is closed.
- (e) Heat the TVV to above 54°C (129°F) with hot water.
- (f) Blow air into a pipe and check that the TVV is open. If a problem is found, replace the TVV.
- (g) Apply adhesive to 2 or 3 threads of the TVV, and reinstall it.

Adhesive:

Part No. 08833-00070, THREE BOND 1324 or equivalent

Torque: 25 N-m (250 kgf-cm. 18 ft-lbf)

(h) Fill the radiator with engine coolant.